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Rolls versus squares in thermal convection of fluids 
with temperature-dependent viscosity 
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We consider Gnite-amplitude thermal convection in a horizontal fluid layer. The 
viscosity of the fluid is dependent upon its temperature. Using a weakly nonlinear 
expansion procedure, we examine the stability of two-dimensional roll and three- 
dimensional square planforms, in order to determine which should be preferred in 
convection experiments. The analysis shows that the roll planform is preferred for 
low values of the ratio of the viscosities at the top and bottom boundaries, but the 
square planform is preferred for larger values of the ratio. At still larger values, 
suboritical convection is predicted. We also include the effects of boundaries having 
finite thermal conductivity, which enables favourable comparison to be made with 
experimental studies. A discrepancy between the present work and a previous study 
of this problem (Busse & Frick 1985) is discussed. 

1. Introduction 
There is much interest in thermal convection in fluids with temperature dependent 

viscosity, due mainly to its application to convection in the Earth’s mantle. The 
mantle may be modelled as a fluid with strongly temperature-dependent viscosity, 
as i t  is known that the deformation of the mantle material is a strong function of 
temperature (Booker 1976; see also the reviews by Turcotte & Oxburgh 1972 and 
Peltier 1985). Also, observational evidence indicates that the planform of the 
convection is three-dimensional (McKenzie et al. 1980). 

Several studies have been conducted into the effect of temperature dependence 
of viscosity upon the onset of convection in the Rayleigh-BBnard configuration. 
They include experiments (e.g. Hoard, Robertson & Acrivos 1970; Somerscales & 
Dougherty 1970) end theoretical studies (Booker 1976; Booker & Stengel 1978; 
Stengel, Oliver & Booker 1982). Stengel, Oliver & Booker have shown that the 
effect is dependent upon the form of the temperature dependence of the viscosity and 
the type of velocity boundary conditions used. For the case of viscosity varying expo- 
nentially with temperature they showed that the critical value of the Rayleigh 
number R (defined in terms of the viscosity at the midpoint of the layer) increases 
with the viscosity ratio r (defined as the ratio of viscosity at the top boundary to 
that at the bottom boundary) until r x 1O00, and then rapidly decreases with r .  Until 
R reaches its maximum value, the critical wavenumber varies very little, but then 
increases exponentially with r. Similar results have been found for super-exponential 
temperature dependence of viscosity, which is a realistic model for glycerol (Stengel 
et al. 1982), silicone oil (Oliver & Booker 1983) and golden syrup (White 1982). 
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Theoretical planform studies have been primarily concerned with the effects of 
weak temperature dependence of viscosity. The analyses of Palm (1960), Segel & 
Stuart (1962), Palm & Oiann (1964) and Busse (1967) showed that the onset of 
convection occurs in the form of hexagons when r is small. Such behaviour is typical 
of convection in which the Boussinesq symmetry of the layer is broken. Busse (1967) 
also showed that the hexagonal planform is unstable to roll solutions if the Rayleigh 
number is increased slightly. 

Experimental planform studies by Oliver (1980) and White (1982) both confirm the 
results of the weakly nonlinear analyses at  low r ,  but the behaviour at higher r is quite 
different. Oliver’s experiments (using silicone oil) show that hexagonal convection 
appears subcritically at large r .  This planform eventually becomes unstable to a 
square planform if the Rayleigh number is sufficiently high (a few times critical). 
White’s experiments (using golden syrup) were performed by inducing a particular 
planform at supercritical Rayleigh number and then slowly reducing R until 
convection no longer appeared. In this way White showed that both hexagonal and 
square planforms can be stable over a range of Rayleigh numbers including subcritical 
values, for r sufficiently large. In such a situation, initial conditions and the effects 
of sidewalls are likely to determine which planform is preferred. 

Oliver & Booker (1983) proposed a weakly nonlinear analysis procedure to 
investigate the stability of square cells, but rejected its use because their experiments 
indicate that square cells are only stable at  Rayleigh numbers significantly larger 
than critical. However, as White’s experiments show that the square planform is 
stable near critical, a weakly nonlinear analysis can be useful. Busse & Frick (1985) 
(hereinafter called BF) consider a situation in which the viscosity of the fluid varies 
linearly with temperature, which is computationally convenient but not very 
realistic. They solve the Boussinesq equations for an infinite-Prandtl-number fluid 
by representing the velocity and temperature functions by low-order modal trunca- 
tions. The stability of particular planforms is then determined by calculating the 
time evolution of the coefficients of each mode. The computational complexity of the 
solution procedure requires that the modal truncation be of low order and that only 
certain planforms be considered, so BF limit their analysis to roll and square 
planforms. Their results show that the square planform is stable provided r is 
sufficiently large. At small r ,  they find that the roll planform is the stable one. Near 
the critical Rayleigh number, they find that the changeover of stability from rolls 
to squares occurs at r w 2, and that as R is increased there is a range of r at which 
both rolls and squares are stable. They also find that neither square nor roll planforms 
exist subcritically over the range of r investigated. 

In  this paper we present a weakly nonlinear analysis of thermal convection with 
temperature-dependent viscosity, which is similar to that proposed by Oliver & 
Booker (1983). The problem is an extension of the analysis presented in Jenkins & 
Proctor (1984) (hereinafter called JP), which considered the effect of finite thermal 
conductivity of boundaries upon the convection planform.The analysis is presented 
in terms of a general temperature dependence of the fluid viscosity, and results are 
presented for a linear dependence, which allows comparison with the results of BF, 
and for an exponential dependence, which is closer to the behaviour of real fluids. 
The combined effects of temperature dependence of viscosity and finite conductivity 
boundaries are also investigated, enabling improved comparison with experimental 
studies. 



Rolls versus squures in thermal convection 493 

2. Formulation 
We consider a layer of Boussinesq fluid of depth d located between solid slabs of 

depth $Id, where h is of order unity. The thermal conductivity of the fluid is k and 
of the slabs is k,; the respective thermal diffusivities are K and K ,  and p is the fluid 
density. All of k, k,, K and K ,  are assumed to be constants. Cartesian coordinates are 
chosen with the origin st the midpoint of the layer. Gravity, g is perpendicular to 
the slabs; the fluid has velocity u and pressure p .  The temperature T is fixed at the 
outer surfaces of the slabs, so that the overall temperature difference is AT. We let 
O(x, t )  and 8(x, t )  represent temperature perturbations in the fluid and solid slabs 
respectively, from the basic state of no fluid motion and a conduction temperature 
profile. Then the equations of motion, heat and mass conservation in dimensionless 
form are 

in the fluid and 

in the slabs. In  (2.1), the tensor S is the stress tensor with 

where p is the dynamic viscosity of the fluid, made dimensionless by scaling with the 
viscosity at z = Oh,). The dimensionless parameters are the Rayleigh number R and 
the Prandtl number 6, which are defined in terms of po: 

where v, = po/po is the kinematic viscosity, p, is the fluid density at x = 0, q is the 
basic-state temperature gradient in the fluid and a is the coefficient of thermal 
expansion. Because fluids with significant temperature-dependent viscosity generally 
have high Prandtl number, we restrict the analysis by assuming infinite Prandtl 
number. Thus the right-hand side of (2.1) disappears. This assumption is consistent 
with most recent studies of convection with temperature-dependent viscosity. 

The velocity vanishes on the boundary z = +_a and the temperature boundary 
conditions are 

8 = 0 ,  z = f i ( l + h ) ,  ( 2 . 5 ~ )  

(2.5b) 

( 2 . 5 ~ )  

where g = k , /k  and D represents a/&. 

temperature To 
We represent the viscosity as a general function of the deviation from the reference 

(2.6) P = pu(T-To). 
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Now in general we can write the velocity u as 

u = v x v x (q52)+V x ($2). (2.7) 

In  JP, the function $ was zero because u was poloidal. BF point out that the 
nonlinearity introduced by the dependence of p upon temperature is responsible for 
the generation of vertical vorticity, so $ is non-zero. However, i t  is straightforward 
to show that the vertical vorticity is zero to the order required for the weakly non- 
linear expansion considered here (see Oliver 1980). Hence we need not consider $. 

3. Weakly nonlinear expansion 
We expand u, 8, 8, p and R in powers of the small parameter E as 

u = su,+s2u2+ ... , ( 3 . 1 ~ )  

8 = se,+s2e2+. , .  , (3.1 b) 

8 =  E 8 1 + E 2 8 2 + . . .  , ( 3 . 1 ~ )  

p = €P1+E2P2+ ... , (3.ld) 

and R = Ro+s2R2+ ... , (3.le) 

and scale the time t as 

The expansions are the appropriate ones for the symmetries in the problem (see JP). 
Also, the viscosity must be expanded in terms of E ,  because of its temperature 
dependence. Substituting the expansion 

a a 
at a7 (3.l.f 1 = $-* - 

T-To = - ~ + + 8 , + ~ ~ 8 , + . . .  (3.2) 

p = U ( Z ) - E D U ( Z ) ~ , + E ~ [ + D ~ U ~ ~ - D U O , ] + O ( E ~ ) ,  (3.3) 

into (2.6) yields, after some manipulation 

where 

and D represents d/dz. At  leading order in E ,  a linear time-independent problem is 
obtained, which can be reduced to 

U(Z) = P( - 4 

Ro Vk 8, - 2.V x V x (V*S,) = 0, (3 .44  

w1 +VV,  = 0, (3.4b) 

v28, = 0, (3.4c) 

where V& is the horizontal Laplacian, w1 is the vertical component of u, and 

aula au 
( a ,  axi) 

Slif = U(Z) -+A . (3.5) 

Equation (3.4~) is obtained by operating on (2.1) with 2'VxVx. The boundary 
conditions on w1 are 

and for 8, and 6, are as given in conditions (2.5). The system (3.4) is separable in 

w1 = Dw, on z = &+ (3.6) 
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the horizontal coordinates so we write $1 = f(z, y) h(z), O1 = f(z, y) g(z) and 
8, = f ( z ,  y)g(z), where f is the planform function, which satisfies 

V& f = -ay, 
and substitute into (3.4) to yield 

(3.7) 

U(D2 -a2),h + 2DU(D2- a,) Dh+ D2U(D2 + a,) h = Rog, ( 3 . 8 ~ )  

(D2-a2)g+a2h = 0, (3.8b) 

(D2-u2)@= 0, ( 3 . 8 ~ )  

h = D h = O  o n z = + &  (3.8d) 
with boundary conditions 

g = g  o n z = + i ,  (3.8e) 

Dg = @g on z = &+, ( 3 3 f  1 

@ = O  o n z = k t ( l + A ) .  (3.89) 

If the viscosity functionp is a constant, which when scaled is unity, then (3.8) reduces 
to the linear eigenvalue problem considered by JP. Equations (3.8) may be solved 
numerically for any particular form of p by discretizing the interval -4 < z < 4 and 
solving the resulting matrix eigenvalue problem by the inverse iteration method. This 
yields the critical Rayleigh number R, and corresponding wavenumber a as a function 
of h and 5. The linear problem has been solved by BF for a linear viscosity function 
and by Stengel et al. (1982) for an exponential viscosity function. Both studies assume 
that the boundaries of the fluid layer are perfect conductors of heat. The results of 
the present study match the previous results for both types of viscosity function, 
when 6 is set to a sufficiently large value. At second order in E: the following system 
arises : 

Ro V p , - ? V  x V x (V*S$')) = L*V x V x (V*Sp)), ( 3 . 9 ~ )  

w , + v v ,  = u,-ve,, (3.9b) 

VV, = 0, (3.94 

where (3.10 a )  

(3.10b) 

Note that Sf) is linear in u, while Sp) is nonlinear in the fist-order eigenfunctions. 
The boundary conditions for u,, 8, and g, are identical with those for ul, O1 and 8,, 
respectively. We assume that the planform function f takes the form 

f =  A(T) c o s a z + B ( ~ )  cosay, (3.11) 

which can represent both roll and square planforms, and then evaluate the right-hand 
sides of (3.9). This results in a set of inhomogeneous linear ordinary differential 
equations for the vertical dependences of each of the horizontal modes arising from 
the form of the right-hand sides, which are solved numerically on the same finite- 
difference grid as the linear equations. 
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I I1 I11 

A ' + b  

VI V IV 
FIQURE 1.  Bifurcation diagrams for the steady states of (3.15). The six different situations 
correspond to the conditions on the coefficients E and F given in Table 1.  Dashed lines represent 
unstable states and solid lines represent stable states. C = conduction; R = roll; S = square. 
Adapted from Swift (1984). 

Finally, at third order in the expansion, the system of equations 

- Vp, + Ro 8, 2 + V * S f )  = -V*Sf') - R, 8,2, 

where sgj = u ( 2 + 2 ) ,  

ae 
3 -  aT W,+V28 - '+u;v8,+u;ve1, 

v.u3 = 0, 

( 3 . 1 2 ~ )  

(3.12 b) 

(3 .12~)  

(3.12d) 

(3.13 a)  

Note that Sf) is linear in u,, and so has been included in the homogeneous part of 
(3.12 a), while Sf') is nonlinear in the lower-order functions. The boundary conditions 
for u,, 6, and g, are identical with those for u,, 8, and g1, respectively. We determine 
a solvability condition for this inhomogeneous linear boundary-value problem, which 
must be satisfied for all,u*, 8* and 8* that are solutions of the homogeneous adjoint 
problem. In this case the solvability condition is 

(3.14) 
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I E - F > O  E + F < O  E < O  stable supercritical rolls 
I1 E - F < O  E + F < O  E t O  stable supercritical squares 
I11 E - F < O  E + F > O  E < O  subcritical squares 
IV E - F < O  E + F > O  E > O  subcritical rolls and squares 
V E - F > O  E + F > O  E > O  subcritical rolls and squares 
VI E - F > O  E + F < O  E > O  subcritical rolls 

TABLE 1 .  Steady states of (3.15) 

where the angled brackets denote averaging over the fluid layer and the braces denote 
averaging over the slabs. The homogeneous part of the boundary-value problem 
consisting of (3.12) and its boundary conditions is the same as the first-order problem, 
which is self-adjoint for the inner product represented by the averaging, so u*, O* 
and 6* are the first-order solutions. Evaluation of (3.14) for each of the horizontal 
modes in (3.11) leads to the following time-evolution equations for the amplitudes 
A and B :  

dA 
- = R, A +  EAs+ FAB', 
dr  

dB 
- = R, B +  EBs+ FA'B. 
dr  

(3.15a) 

(3.15b) 

The coefficients E and F are integrations over the vertical coordinak of expressions 
involving the linear functions evaluated at first and second order. 

The steady-solutions of (3.15) are the conduction state (A = B = 0), the roll 
planform (one of A or B zero) and the square planform ( A 2  = B2 =l= 0). Swift (1984), 
in a comprehensive study of convective planform selection, has identified six possible 
sets of behaviour for solutions of (3.15), depending upon the sign and magnitude of 
the coefficients E and F. In  fact, there are three relevant combinations of E and F 
that determine the behaviour: E-F, E+F and E. Figure 1 shows bifurcation 
diagrams for the six different cmes that exist under the conditions given in table 1. 
These can be determined by considering the linear stability of each of the steady 
states. In  the next section we evaluate E and F as functions of r for linear and 
exponential viscosity functions and determine which of the states in figure 1 is 
appropriate. 

4. Results 
We consider two types of viscosity function: 

P(T-T,) = l-q(T-T,), (4.la) 

The most useful parameter for comparison between different forms of ,u and also 
for comparison with other research is the viscosity ratio r ,  which is defined as 
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FIQURE 2. Graphs of the coefficient combinations E (solid line), E - F  (dtwhed) and E + F  (short 
dashed) as functions of the viscosity ratio r ,  with 5 = 00 and h = 1, for (a) &linear viscoeity function 
(equation (4.1 a)) and ( b )  an expunendial viscosity function (equation (4.1 b ) ) .  The Roman numerals 
correspond to the steady states in table 1.  

where ,urnax and ,urnin are the viscosities at the top and bottom of the layer, 
respectively. The relationships between r and the parameter 7 for the two functions 
given in (4.1) are 

(4.3a) 

T = eT. (4.3b) 

The linear function has been investigated by BF and so provides a basis for 
comparison with the results derived here. The exponential function has been 
investigated by Stengel et al. (1982) for its effect upon the linear stability of 
convection and some initial work has been done by Oliver (1980) to investigate the 
stable planforms. The exponential function is a more realistic form for the 
temperature dependence of viscosity, particularly as 7 (and hence r )  becomes large. 
Note that the linear function has a limiting value of 7 = 2 at which the viscosity ratio 
becomes infinite. 

4.1. Perfectly conducting boundaries 
The limiting case of c-. 00 is approximated by setting 6 to an extremely large value 
for the numerical evaluation of the coefficients, which is justified because the problem 
is well behaved in this limit. In  figure 2 we show graphs of E- F, E+ F and E as 
functions of the viscosity ratio r ,  for the linear and exponential functions. The 
important points on the graphs are the intercept of each curve with the horizontal 
axis. Each intercept indicates a change in behaviour as given by figure 1 and table 1. 
We call the (E-F)-intercept r l ,  the (E+F)-intercept rz and the E-intercept rs. 
Figure 2(a) shows that only types I and I1 of table 1 exist, at least up to r = 399, 
so convection always occurs supercritically in this range. It is not clear whether the 
curve of E + F asymptotes to the horizontal axis, always remaining negative, or 
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it crosses the axis at larger r. The accuracy of the solution procedure for r > 399 is 
not sufficiently high to be able to resolve this point. However, the results are a 
considerable advance on those of BF, who only examined the problem for values of 
r up to order 10, albeit for a larger range of Rayleigh number than applicable here. 
Note that r = 399 corresponds to g = 1.99, which is approaching the limit g = 2 at 
which r becomes infinite. A more sophisticated solution procedure would be required 
for accurate determination of the behaviour in this limit, but it is questionable 
whether the effort required is of much use, since the limit does not correspond to any 
realistic behaviour. With the exponential viscosity function, the above problem does 
not arise. 

The other feature to notice from figure 2(a) is that the stable planform changes 
from rolls at low values of r to squares at higher r. The changeover occurs at rl x 3.2. 
This value is different to that calculated by BF using a different method. They find 
that rl x 2. It is not clear why there should be such a difference. The algebra required 
to calculate E and F has been carefully checked, as has the computer code that is 
used to evaluate them. The lack of agreement with the work of BF means that other 
forms of verification are required. We show in the following section that the 
calculations presented here agree with the behaviour determined for the limit of 
almost insulating boundaries by Gertsberg & Sivashinsky (1981 ), thus providing some 
evidence for the accuracy of the present results. 

The results shown in figure 2 (b) are significantly different from those in figure 2 (a) 
and provide new information about thermal convection with temperature-dependent 
viscosity. The figure shows that all of the states I, 11, I11 and IV exist as r is increased. 
As in the linear case, the roll planform is stable until r = rl x 3 and then the square 
planform is stable, and convection is supercritical. However, when r = r2 (x  16), 
E + F changes sign, so square-planform convection can occur subcritically, and when 
r = r,( x 145), E changes sign, whence both rolls and squares can exist subcritically. 
The existence of subcritical square-planform convection is a significant new result. 

4.2. Finite-conductivity boundaries 
As examples of the effect of finite-conductivity boundaries upon the results given 
above, the graphs of figures 3 and 4 are presented. Figure 3 plots the curves of E -  F, 
E +  F and E as functions of r for the exponential viscosity function, with the boundary 
conditions modified so that 6 = 10 and A = 1. The value of 6 = 10 has been chosen 
because it is comparable with the value of used in experiments with transparent 
boundaries (e.g. Le Gal, Pocheau & Croquette 1985, have 6 = 7 for glass boundaries 
with silicone oil as the fluid) and also because it is above the value of 6 for which 
the changeover from rolls to squares occurs (Cc) when the viscosity is a constant (JP 
show Q x 1 for high-Prandtl-number fluids, with h = 1). The values of rl, r, and r, 
in this case are less than those for the perfectly conducting case. Here, rl x 2.5 (3), 
r2 x 13 (16) and r, x 140 (145). The figures in brackets are the values for 6 = 00. 

Figure 4 shows graphs of E - F, E + F and E for both linear and exponential viscosity 
functions, with 6 = 0.1 and A = 1. In  this case 6 < 5, for the constant-viscosity case. 
Thus the E -  F curve is always negative, so stable supercritical rolls (state I in table 
1) cannot exist. Figure 4(a) shows that r2 x 2.2 and r, = 9 for the linear function, 
which means that subcritical convection can occur with a linear viscosity variation. 
Figure 4(b) shows that r2 x 2 and r, x 13 for the exponential function. It is clear 
that for low r,  and thus low 7, the linear viscosity function approximates the 
exponential one. Thus it is to be expected that the behaviour of the convection in 
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FIGURE 4. Graphs of the coefficient combinations E (solid line), E - F  (dashed) and E+F (short 
dashed) aa functions of the viscosity ratio T, with c = 0.1 and A = 1 for (a) 8 linear viscosity function 
(equation (4.1 a))  and (b) an exponential viscosity function (equation (4.1b)). 

these two cases should be similar at low 7, and indeed it is. The effect of the 
low-conductivity boundaries is to  emphasize the similarity of behaviour. 

4.3. Comparison with experiments 

The experiments of White (1982) used Golden Syrup as the working fluid and Perspex 
boundaries. Appropriate parameter values for this configuration are h = 0.25 and 
5 = 3. Using these values, we have calculated E and F for various r and found that 
a square planform is stable for r > 2.4 and a subcritical square planform is possible 
for r > 13. This is to be compared with White’s claim that he observed subcritical 
squares for r > 6. 
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The appropriate parameter values for the experiments of Le Gal et al. (1985) are 
A = 6 and 6 = 7. With silicone oil as the working fluid, the viscosity ratio they used 
was r = 1.12. Using these values, we find that 

E - F  = 429, 

E + F  = -8341, 

E = -3956, 

which means that r < r1 (type I behaviour) indicating that rolls, rather than squares, 
are stable. Le Gal et al. observed a stable square planform for slightly supercritical 
Rayleigh numbers. 

The reasons for the discrepancies between two sets of carefully controlled experi- 
ments and the present theory are not clear. There is good qualitative agreementwith 
White's results, but differences may be due to the type of viscosity function used and 
also to errors in estimating the critical Rayleigh number by White due to the finite 
thermal conductivity of the boundaries. The effect of sidewalls in experiments may 
also be important. Bernoff (1985) has considered the effects of sidewalls upon the 
stability of the square planform in a container having the symmetry of a square and 
has shown that it is always stable for R -  R, sufficiently small, even when the top 
and bottom boundaries are perfect conductors of heat and the fluid viscosity is 
independent of temperature. However, it rapidly loses stability as R -  R, is increased. 
Although the experiments of Le Gal et al. used a circular container, the results of 
Bernoff s analysis provide evidence that the sidewalls may be extremely significant. 

5. Almost insulating boundaries 
Gertsberg & Sivashinsky (1981) and Depassier & Spiegel (1982) have considered 

the problem of thermal convection between almost insulating boundaries, including 
the effect of a weak temperature dependence of the fluid viscosity. In the insulating 
limit, the wavenumber of the convection becomes small, and an expansion scheme 
can be developed which separates the vertical and horizontal coordinates. Gertsberg 
& Sivashinsky presented a similar analysis to Chapman & Proctor (1980) and Proctor 
(1981) and developed almost identical equations for the horizontal dependence of 
convection. However, including the effects of temperature-dependent viscosity into 
the analysis adds an extra term to the equation. They consider a viscosity variation 
of the form 

where B = O ( @ )  and 5 is O(1). Although Gertsberg & Sivashinsky do not include the 
temperature-dependent viscosity term in their analysis of three-dimensional con- 
vection, it is possible to infer its form from the two-dimensional equation. The 
appropriate equation for the planform function f is then 

/.@-To) = 1 -E2g(T-To), (5.1) 

ft = -A(R-R,)  v&f-Bv&f+ m,* (IvHfl'VHf) + m,' ( f v ~ f )  + Del,,!, (5.2) 

where the constants A, B, C and R, are (for rigid boundaries) 

A = L  720, B = & ,  C = Y ,  R,=720. 

An appropriate expansion procedure can be applied to (5.2) in order to derive 
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Asymptotic Calculated 

7 x 1 0 3  E F E F 

0 - 1.272 -0.8478 -1.258 -0.8390 
0.5 -1.107 2.1195 -1.108 2.0723 

1.5 0.2120 25.85 0.2195 25.65 

TABLE 2. Asymptotic comparison. Calculations used 6 = lo-’. 

1.0 -0.6123 11.02 -0.6111 10.88 

evolution equations for comparison with the computational work described in the 
previous sections. The coefficients of the evolution equations then turn out to be 

where 7 = @[ is the viscosity-variation parameter used in the previous sections. The 
above expressions for E and F can be compared with the computed values at low 
y and 7 as a check on the procedure employed here. Table 2 shows such a comparison 
for the case = lo-’ and various 7. It is evident from the table that the computed 
coefficients approximate the asymptotic behaviour given by (5.3) and (5.4). 

6. Degenerate points 
The points where E- F, E+ F and E change sign ( r l ,  r2 and r3 respectively) are 

points of degeneracy. In  the neighbourhood of these points the above analysis cannot 
determine the stable planform, so a higher-order analysis is required. It is necessary 
to expand about the degenerate point in terms of both R and r .  The evolution 
equations necessary for describing the stable solutions require terms up to fifth order 
in amplitude. The results of BF illustrate the type of behaviour near the degenerate 
point r1 (E-F = 0). They found that both squares and rolls are stable over a range 
of r-values near r1 for supercritical Rayleigh numbers. The relevant amplitude 
equation in this case is (adapted from Swift 1984) 

(6.1) 
dA 
- = A[Rz+E(A2+B2)+~Bz+G(A2+B2)2+HA4+KB4], 
d? 

where S is a small parameter representing the deviation from the degenerate point 
and G, H and K are O( 1) coefficients. The equation for the evolution of B takes the 
same form, with A and B interchanged. Swift showed that for the case E < 0, there 
are two possible types of behaviour depending on the sign of H +  K, as illustrated 
by the bifurcation diagrams of figure 5. The results of BF show that in the region 
marked 111 in figure 5 both squares and rolls are stable, indicating that in this problem 
H +  K > 0. The similarity of the bifurcation diagram of figure 5 to the results of BF 
indicates the amount of information that can be derived from a weakly nonlinear 
analysis provided that the expansion is carried to sufficiently high orders. The 
problem with including the higher-order terms is the large amount of algebra and 
computing required to evaluate the coefficients. 
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FIQURE 5. (a) Bifurcation diagrams and (b) phase portraits for the steady states of equation (6.1). 
The state G is a general solution, whose stability depends upon the sign of H+ K. C = conduction; 
R = roll; S = square. Adapted from Swift (1984). 

It is possible to carry the expansion procedure to fifth order in the limit of 3+0. 
The algebra involved in expanding the Gertsberg-Sivashinsky equation is less tedious 
than expanding the full problem at finite 3. There are only two degenerate points in 
this limit. The combination E -  F is always negative, because the poorly conducting 
boundaries stabilize the square-cell planform. But we see from (5.3) and (5.4) that 

E+F = 0 when T,J~ = #C[, 

E = 0 when qa = WC. 
Gertsberg BE Sivashinsky (1981) have considered the degeneracy E = 0, since the 

behaviour depends only upon the sign of the As coefficient in the amplitude equation, 
which can be determined from their two-dimensional analysis. The relevant fifth- 
order amplitude equation is (Swift 1984) 
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Swift showed that when E - F  < 0, which is the case when E = 0 in this problem, 
all steady solutions of (6.2) are unstable, so that very little extra information about 
the nature of the planform near rg has been obtained from the fifth-order calculation. 

For the degenerate point r2 at which E + F = 0, the relevant fifth-order amplitude 
equation is (Swift 1984) 

(6.3) 
dA 
- = A[& + 2FB2 + 6(A2 + B2) + GA2B2 + HA4 + KB4] 
d7 

and the behaviour depends upon the sign of G+ H +  K. This case is interesting because 
a stable subcritical square planform exists provided G + H +  K < 0. Hence the 
possibility of observing such a planform in experiments has a theoretical basis. 

7. Discussion 
The present study has provided significant insight into the stability of the square 

planform when the viscosity of the fluid in a Rayleigh-BBnard configuration is 
dependent upon temperature. Prior to this, the only theoretical study of the problem 
was by Busse & Frick (1985), but the viscosity function they used is unrealistic and 
causes computational problems as the ratio T of viscosities at the top and bottom of 
the layer becomes large. Here we have shown that the results of BF are limited by 
the small range of r that they studied. The present work extends their analysis to 
higher values of T ,  although it is valid only near the onset of convection. The results 
indicate that subcritical square-cell convection may occur for r sufficiently large, 
when the boundaries of the fluid layer are perfect conductors of heat. Although it 
was not possible to show this explicitly, owing to the singular nature of the viscosity 
function, it could be inferred from the results at lower values of r and the results when 
the boundaries are poor conductors of heat. Thus we have shown results that are 
qualitatively similar to those of BF, but some numerical discrepancies exist. The 
analysis in the limit of almost insulating boundaries given above serves to  sub- 
stantiate the numerical results in the present study. 

Because the analysis presented here is developed for a general functional depen- 
dence of viscosity, it has been possible to produce results for a more realistic 
temperature dependence than that studied by BF. The exponential profile has been 
chosen for its similarity to the actual dependence of many fluids. Also it does not 
exhibit singular behaviour as r becomes large, so computation is less difficult than 
with the linear function. The drawback is that the expressions required to evaluate 
the coefficients of the evolution equations are much longer. Oliver (1980) carried out 
a similar analysis to the one given here for an exponential viscosity function, but only 
performed the relevant calculations up to second order. We have completed the 
calculations proposed by Oliver and then extended the analysis by considering the 
possibility of boundaries with finite thermal conductivity. 

Finally, we have compared the analysis with experimental studies of square- 
planform convection for fluids with temperature-dependent viscosity. We found 
qualitative agreement with the results of White (1982), but quantitative differences 
still exist between theory and experiment, possibly due to the presence of sidewalls 
in the experiments. 

The comparison of square-planform convection as discussed in this paper with 
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experimental observations of square-cell convection is clouded by the question of 
the validity of the expression 

f = cosax+cosay (7.1) 

as a prototype form for square convection. Stuart (1964) proposed that the above 
representation is not valid, because there is no unambiguous means of determining 
cellular boundaries, defined as surfaces through which no fluid passes. However, there 
is no doubt that square-cell convection has been observed e.g. by White (1982), Oliver 
& Booker (1983) and Le Gal et al. (1985). We believe that square-planform convection 
as represented by (7.1) does produce patterns similar to those obtained in experi- 
ments, when the effects of the shadowgraph technique are considered. This technique, 
which relies upon the variation of the refractive index of the convecting fluid with 
its density, and hence temperature, is a commonly used means of observing 
convection planforms. Recent work (Jenkins 1987) shows that the shadowgraph 
pattern of (7.1) results in unambiguous square cellular boundaries that represent 
surfaces through which no fluid paases. The pattern closely resembles some observed 
shadowgraph patterns of square cells. 

The author gratefully acknowledges many hours of helpful discussion on this 
problem from M. R. E. Proctor and A. J. Bernoff. The work presented in this paper 
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